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FOREWORD

The reliability of a complex system frequently enters into
impor~tant decisions. The decision-making process may be
difficult when the lifetime distributiot' of the particular system
is known; it becomes more difficult when the lifetime distribu-
tion is unknown. Such maybe the case when a new type of equip-
ment is placed in operation on a large scale. Provisioning for
replacements should be based on the lifetime distribution of the
equipment. but a reliable estimate of this distribution is usually
not available urtil a great deal of failure information has been
obtained. In such a situation it is the aim of the Bayesian ap-
proach to enable all available data to be incorporated Into the

_II

decision-making process.
This paper first discusses some chiaracteri sties that are

desirable in the ckss of lifetime distributions to be examined
by Baysian methoc s and shows that the Weibull distribution
possesses some of these characteristics. The rewainder of the
paper treats the case in which the shape parameter of the
Weibull distribution is known and presents prior.posterior,and
preposterior Bayesian analyses.
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in Bayesian Decision Theery



ABSTRACT

The Weibull distribution is useful in analyzing the probabilistic
lifetimes of many electrical components and complex systems. It is
attractive for Bayesian decision-making because its right-hand ct 'u-
lative function is of an exponential form which allows all life-test data
to be easily incorporated into the decision-making process. Un-
fortunately no natural conjugate prior distribution exists if both the
shape and scale parameters of the Weibull distribution are assumed
to be unknown. If the shape parameter is assumed known, however,
Bayesian analysis becomes little more d.fficult than for the expo-
nential distribution, a special case of the Weibull. Prior, posterior.
and preposterior analyses are given for the case of known shape
parameter. In connection with preposterior analysis several sampling
plans are discussed. The paper concludes with an analysis of a
problem in optimal sampling.



1. INTRODUCTION

Many decisions involve the reliability of electrical components and com-
plex systems. The decision-making process is often difficult when the lifetime
distribution of the particular component or system is known; it becomes more
difficult when the lifetime distribution is unknown. Such Is the case, for ex-
ample, when a new type of equipment is placed in operation on a large scale.
Provisioning decisions should be based on the lifetime distribution of the equip-
ment, but a reliable estimate of this distribution is not usually available until
a considerable amount of failure information has been obtained. This paper
first briefly discusses the benefits that may be obtained by applying the Bayesian
approach to decision problems involving the reliability of systems. Section 2
then discusses some desiderata of the class of lifetime distributions to be ex-
amined by Bayesian methods and shows that the Weibull distribution possesses
some of these desirable characteristics. Section 3 presents a Bayesian analysis
of the Weibull distribution when the shape parameter is assumed known. This
assumption is carried through the remainder of the paper. Experimentation
and preposterior analysis are dipcussed In See 4, and Sec 5 illustrates the ap-
proach with an optimal sampling problem.

In the Bayesian approach we assume that the probability density function
f(r) of the useful lifetime 3' (a tilde indicates a random variable) of a system
is a member of a class of density functions indexed by a parameter vector 0.
Thus we write f(xjO). We assume that the value of 6 which applies to the par-
ticular system under study is unknown and that the decision-maker treats g as
a random variable and expresses his Judgment about 9 in the form of a proba-
bility distribution on W. We write the probability density function of 1as f(8J),
& indicating the experience of the decision-maker. By using the density func-
tions f(x 18) and f (6 1&) and his utilities for consequences associated with future
events involving x and b, the decision-maker can choose among various courses
of action. If some evidence z (failure data) is accumulated, the decision-maker
revises his probability distribution on 4'by Bayes' theorem:

f N(.-I 0. t)I(06olt')a

Here L(z 18, 6) is the likelihood of the evidence z conditional on 8 and &.
The decision-maker will now choose among various courses of action by

employing the revised or posterior density function f(9 Jz, &). Indeed, whenever
a decision must be made, the total evidence z accumulated up until that time
can be incorporated into the decision-making process via the new density func-
tion f(8 z, 6). This is one of the main benefits of the Bayesian approach.
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The notion of a sequence of decisions raises the possibility of deciding to
delay a decision until more evidence is available. But just how much evidence
should be collected before a terminal decision is made? The decision-maker
can decide this by using the density functions f(x 60) and f(8 I S) and his utilities
for consequences associated with future events involving X, 0, and the evidence
7 (which is, a priori, a random variable). This is another major benefit of the
Bayesian approach to decision-making.

The mathematical foundations of Bayesian decision theory are set forth
in Raiffa and Schlaffer.1 For further discussion of the Bayesian approach to
decision problems involving the reliability of systems the reader is referred
to Briggs, 2 Howard,3 and Martel."

2. DESIDERATA FOR BAYESIAN ANALYSIS OF RELIABILITY PROBLEMS

We first list some desirable properties of the density functions f(x 10).
(1) f( x1) must be the density function of a nonnegative random variable.
(2) Depending on 6, f(x10) must assume a fairly wide range of shapes.
(3) The likelihood t(z 1e, F) should have a relatively simple form.
The first property is clearly necessary. The second is desirable if the

analysis is to cover a wide range of reliability problems. For example, the
exponential distribution given by f(x 18) = e- 01 assumes that the failure rate
does not change with time, a somewhat restrictive assumption.

At any time the total evidence z will consist of the information that r sys-
tems have failed after operating for times x, ,... , r, and that n - r systems
have operated for times x,,, , . . . , x, without failing. We assume that systems
fail independently. If we define

G(xeO) % -tI(ylO)dy

the likelihood of all this evidence is

Unless this likelihood has a relatively simple mathematical form the compu-
tations required by Bayes' theorem become very complicated. For example,
the gamma-I distribution with density function

(&rr.y) - y'x'cyz/rfr),

where 4' = (y, ), does not yield a closed-form expression for G(xlr, y) unless
r is an integer, and even then G(xIr, y) is a sum of r terms.

A density function which has the three properties given above is that of
the Weibull distribution (see Quretshi6 for references):

0w(z!A, a) - Ie -Az.
0 S < .

o < A. - (2)
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The parameters a and X are shpe and scale parameters, respectively. The

likelihood t(zIO, S) becomes in this case

t(zA, a).* a'X r,... exp [-A zTA] (3)

We have just discussed some properties that are desirable in the density
function f(x 16). There are also some properties that are desirable in the prior
density function (8 I 6). These are discussed by Raiffa and Schlaifer, and we
list three of them here.

(4) It should be fairly easy to ascertain the posterior density that results
from a given prior density and given evidence z.

(5) f(81 S) should be a member of a closed family f* of density functions
so that the posterior density f( I z, r) is also a member of f*.

(6) The expectations of some simple utility functions with respect to any
member of f* should be expressible in convenient form.

Unfortunately it does not seem possible to find a family f* that possesses
these properties when the parameters A and & of the Weibull distribution are
both assumed to be unknown. This is basically because sufficient statistics of
fixed dimensiona!ity (see Raiffa and Schlaifer') for the evidence z do not exist
in this case. Appendix A briefly examines a joint density function for (A, &)
that has property 4 and has property 5 in a weak sense but does not possess
property 6.

It thus appears that the Weibull distribution with both parameters unknown
is not amenable to useful Bayesian analysis.

3. BAYESIAN ANALYdIS OF THE WEIBULL DISTRIBUTION WITH
KNOWN SHAPE PARAMETER

In the remainder of this paper we shall assume th't f(r 18) is given by the
Weibull density function (expression 2) and that the value of the shape param-
eter a is known. In this case only the scale parameter A need be treated as
a random variable. The following have been offered as justification for this
assumption:

(1) For some items, such as vacuum t ibes (see Kao'), an appropriate
value of a may be known from previous test evidence.

(2) The same assumption is made in standard Weibull life-testing pro-
cedures (see Ref 7).

(3) Previous Bayesian analysis of the exponential distribution (see Raiffa
and Schlafer,' Briggs, 2 and Martel4 ) in effect makes the assumption a = 1. It
is no less valid to assume a value of a other than I in an appropriate situation.

Natural Conjugate Distriblition

We need to find a family f* of density functions that possesses properties
4, 5, -nd 6 of Sec 2; one such family is that of natural conjugates to the sample
likelihood (expression 3). With & known, a kernel of the likelihood, i.e., a
factor which depends on A (see Raiffa and Schlafer,' p 30),is

Are-Ay. (4)

5



where

y i (5)

When X is a random variable, the vatural conjugate of expression 4, obtained
by treatin expression 4 as a kernel of a density function for X (see Raiffa and
Schlaifer, p 47),is the gamma-1 density function.

jA-I-A o A < -. (6)f),(Ir Or 0 < r. y < -.

Wilsona han previously used expression 6, in a different context, as a prior
density function when the scale parameter A of a Weibull distribution is unknown.

Prior and Posterior Analysis

Suppose the decision-maker must choose an act a from a set A of possible
acts and his terminal utility (terminal in the sense that no experiment is to be
performed) for an act a and particular value X is u, (a, A). He will choose an
act a' such that

ELUt(W.X) max a u, (a,!).

The notation E indicates that the expectation is taken with respect to the
gamma-1 prior distribution on A.

If a gamma-1 prior distribution with parameters r° and y' is assigned to
and an experiment e yields an outcome z (evidence z) with statistics r and y,

the posterior distribution on X is gamma-1 with parameters r- and y-, where

, y. y. (7)

The decision-maker will now choobe an act a- such that

E; .2 , (a". 1) - max, E I, (a, ).

Here ElI. denotes expectation with respect to the posterior distribution on k,
which is conditional on z.

4. EXPERIMENTATION AND PREPOSTERIOR ANALYSIS

When the decision-maker Is contemplating a specific experiment he must
consider the net value of that experiment. He will generally have a utility
function u(c, z, a, A) defined for each combination of experiment e, outcome z,
subsequent action a, and particular value A. Before experiment e is performed
the outcome F" is a random variable, and so the overall (expected) utility of ex-
periment e is

ul e) E, t ma U(CxF.,I.1. (8)
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Here Elendicates expectation with respect to the distribution of 7.When a
number of experiments are being considered, the final step in preposterior
(before an experiment) analysis is the finding of an optimal experiment e*, i.e.,
one such that

* max e VO).

It is clear from Eq 8 that the distribution of 7 is important for the suc-
cessful completion of preposterior analysis. In the present case the statistic
7 is the pair (7, 7), where 7 is the number of failures observed and Y (defined
by Eq 5)is the sum of the ath powers of the opornting times.

The'next subsection briefly discusses a particular type of sampling plan
(experiment) and gives the distributions of _r and 7. We also consider the time
T required to complete the experiment. It is assumed that the prior distribu-
tion on X is gamma-i with parameters r and y'. Two other sampling plans
are then mentioned in the subsection, "Other Sampling Plans.,

Test n Items Simultaneously, without Replacement,
urtil r Failures Occur

In this sampling plan i Items are placed on life test at the same time and
the experiment is terminated when r of them have failed. In the special case
in which r = n, the failure times of all n are observed. The statistic r is pre-
determined and the distribution of y is desired. It can be shown (see RAC-TP-
215') that this distribution is inverted-beta-2:

yjr'. y'; r) - f , (ylr'r°'y' . 1 ." (V '9"

Note that this distribution does not depend on n. The time I to complete the
experiment (i.e., the time of the rth failure) does depend on ,; the density func-
tion for ( is very complicated, but the pth moment is given by (see RAC-TP-
215'):

EE'PIr'.y'; r.u) - EG'lhl:r.u)(yVe/ot -p/ot)/l1. (10)

Here E( I1; r, n) is the expected value of the pth power of the rth order sta-
tistic in a sample of n items. Each of these items has a Weibull lifetime d.:s-
tribution with A 1 and the same value of a used in the Bayeiian analysis.
The first moment, E(I'1;r, n), is tabulated by Harter"0 for e = 0.5(0.5)4(1)8,
r = 1(1)n, n = 1(140. The pth moment may be obtained by replacing a by /p.

Other Sampling Plans

There are a number of other sampling plans that may be considered in
practice and are therefore worthy of further investigation. Two of them are
as follows:

(1) Test items sequentially until r failures occur. As soon as one item
fails, another one is placed on life test. The statistic r is fixed and and i
are random variables. This sampling plan is discussed in RAC-TP-215.9

(2) Test a components simultaneously, without replacement, and stop at
time " = min(, T, where Z, is the time of the mth failure and T is fixed in
advance. In this case r, y, and 't are all random variables.

7



5. A PROBLEM IN OPTIMAF SAN.?L[NG

To illustrate the i" ous developments we present an analysis (including
prior, posterior, ant: ;, terior analybes) of a hypothetical problem. The
sampling plan is the ;.. the one considered previously, namely testing is
items simultaneously .. h1 out replacement, until r failures occur. It is desired
that the optimal values of r and n be fund.

Problem Statement

A manufacturer must supply a traveling-wave tube for use in a govern-
ment satellite. He can either use one of type TI (act a,) whose lifetime dis-
tribution is known or use one of type T2 (act a2) which has just been developed
and whose lifetime distribution is unknown. He is willing to assume that the
lifitime distribution of type T2 is Weibull with a particular value of the shape
parameter a. He assigns a gamma-i prior distribution with parameters r" and
y to te unknown scale parameter 1.

The manufacturer's terminal utility function u, (a, A) is derived as follows.
If the tube used in the satellite functions longer than time 1. , benefits with
ut~lity k accrue to the manufacturer. If the tube fails before time 1 , his utility
is zero. His overall utility is thus k[Prob(tube life exceeds to )], and therefore

ucw 2 ,vA) ke - kp - a (02.1?).

where

If is a random variable, so is . Since the lifetime distribution of type TI Is

known we have u(a,, A) = u, (a,, p) = K, a constant.

Prior and Posterior Analysis

It is convenient in this prob!em to work with the random variable . We
assume that K < k so that there exists a breakeven value of p, called P,, suc'F
that u,(a,, p,) = u,(a,, p); thus A = K/k. Then a, is preferred for p < p,, and
a. is preferred for p > Pt.

Since P- is a random variable, if terminal action is to be taken on the basis
of prior information thc manufacturer should choose an act a' such that

But E'a (a,, ) K and E, (a,, ') , where j -' y'/(y" + It) " is the
mean of thz prior distribution on p. Thus the optimal act under the prior dis-
tribution is

a, if~ Pb'

If an experiment (life-test sample) on tubes of type T2 yields an outcome
with statistics r and y, the posterior distribution on X will be gamma-I with

8



parametersr'" = r" + r and y- y" + y. The optimal act under the pos-
terior distribution will then be

2.if P" :5
2 if r ?

where r = [y'/(y" + t*))r" is the mean of the posterior distribution on

Preposterior Analysis

In considering the value of sampling we assume that sampling and termi-
nal utilities are additive, so that u(e, z, a, p) = "i (a, p) - cq(e, z), where
cs (e, z) is the cost of experiment e and outcome z. Equation 8 then becomes

i t(e) - Ex.tMA.Elzu(.,p) - i.l.C,(eV

- q(e) - co(e).

We have E;. u, (a, p) = u, (a, 2'), where a tilde is placed over A- to indicate
that prior to the experiment it is a random variable. We next note that

mx U " (a, ) -

k- if > P,

We shall consider the sampling plan treated in the subsection "Test n
Items Simultaneously, without Replacement, until r Failures Occur.' The
staiistic y is a random variable with inverted-beta-2 distribution given by Eq
9. Since A" = [y'/(y- + t11)3Y, we obtain

01(e) - f'Kfp2(yjr.r'y1dy + fk [y y Y/(y1 y +a]"' ( (ylr,r*y')y. (11)

where yb is defined by

P6 - [(Yb Y')/(y," Y' "

Now we turn to the expected cost of sampling ds(t). We shall assume that
Cs(e, ) cin + c2t + c3t , where n is the number of tubes placed on life
test, is the duration of the test, and the c, are positive constants. We then
have

c*Sr) - CIN + c 2E(j~r*.y';r.) * c3E1T2lr-y'." r. ).

where E( j", y ; r, n)is given by Eq 10.
The final step in preposterior analysis Is to determine the optimal sampling

plan, i.e., we want to choose r and n to maximize u*(e) = si(e) - c(e). It may
happen, rf course, that u*(e) is less than the utility of immediate terminal
action E'ut (a', 7) for all combinations of r and n; in this case no experiment
should be performed.

Determination of the Optimal Sampling Plan

We can use dynamic programming to find the pair (r*, n*) which maxi-
mizes *(e). Let (r, #) be the (expected) utility of the sampling plan e = (r.i).

9



Define

u*(r) max ulr.n)

Then

u'(r 1n. ) max Or)

The computations required to obtain u*(r) are relatively minor because only
c :(e) depends upon n; u(e) depends only upon r. Determination of u*(T) there-
fore amounts to minimizing c* (r, n) with respect to n and subtracting the re-
sult from u(r) (we write u(e) = u*(r) when c specifies r failures). Recall
that c*(r, n) = c,. + c2 E(Ir, y'; r, n) + c, E 1 Y','; r, N). It can be veri-
fied from the values in Harter 0 that E(P I r', y' r, n) is a convex function
of n for fixed r. It then followvs that c*(r, n) is a convex function of " for fixed
r and so can be m.'nimized over integer values of n fairly readily.

Calculation of uO(r) from Eq 11 Invol'es determination of values of the
incomplete beta-function. Depending on the computational facilities available,
this determination might be done only for selected values of r. Then u(r)
could be computed for these values of r, and the results graphed as a function
of r. The graph would give a good estimate of r* and thi.s estimate could be
checked by computing u* (r) for appropriate values of r.

10
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Appendix A

EXAMINATION OF A PRIOR DENSITY FUNCTION
WITH TWO PARAMETERS UNKNOWN

Here we shall briefly examine a prior density function for the case in
which the parameters X and a of the Weibull distribution are both assumed to
be u.%known. Although this density function possesses property 4 of Sec 2. it
does not really have property S and definitely does not possess property 6.

We take the joint density function on ( , ) in the form of the likelihood,
expression 3:

fl.. J A, fd .1 a i r'., . , (12)

where 0 s X, a r 1;d, > 0; and

h(,r,. n . . I . I" Ar.  
(' ".d -J" A-i 1 - J . J A,

,d '7 ' !, . , , -. ~(13)

Equation 12 .efines a proper density fuction if some d, is greater than 1,
since this suffices to show that k (r' , d ..... d.,-) is finite.

Now if the prior density function on C', ;) is f(,A oJr, d,..... d,.) and
the likelihood of the evidence : is given by expiassion 3. then Bayes' theorem
yields

. J . - ., .(14)

for the posterior density function. Thus the prior density function defined by
Eq 12 possesses property 4. Although the prior and posterior density functions
have similar forms, property 5 is not present because the two deiosity functions
do not have the same number of parameters. Property 6 is lacking for the sim-
ple reason that the constant k(r" , d ..... d,.) cannot be evaluated in closed
form.
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